Phytochemistry, 1973, Vol. 12, pp. 1509 to 1510. Pergamon Press. Printed in England.

3β-HYDROXY-Δ^{5,16}-PREGNADIEN-20-ONE FROM VERATRUM GRANDIFLORUM

K. KANEKO, M. WATANABE and HIROSHI MITSUHASHI

Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan

(Revised Received 24 November 1972. Accepted 11 December 1972)

Key Word Index—Veratrum grandiflorum; Liliaceae; neutral glycoside; steroid; Δ^{16} -pregnenolone.

In our studies on the biosynthesis of *Veratrum* alkaloids¹⁻³ we have systematically investigated the steroids obtained after enzymic (emulsin) hydrolysis of the neutral glycosidic fraction isolated from budding *Veratrum grandiflorum* (Maxim.) O. Loes. (Liliaceae). In addition to the steroid sapogenin yamogenin ((25S)- Δ^5 -spirostene-3 β -ol), the steroi sitosterol, and the cholesterol derivatives dormantinone ((25S)-3 β ,26-dihydroxy- Δ^5 -cholestene-22-one)⁴ and dormantinol ((25S)- Δ^5 -cholestene-3 β ,22 ξ ,26-triol),⁴ a pregnane derivative has been isolated which is now identified as 3 β -hydroxy- Δ^5 ,16-pregnadiene-20-one (I).

RESULTS

Compound I was isolated after silica gel, alumina column chromatography, and had m.p. $208-210^{\circ}$ (acetone, plate form). In the Liebermann-Burchard reaction and with SbCl₃, it gave reddish-yellow to black, and pink colours, respectively. These results suggest the steroidal structure with Δ^5 -3 β -ol moiety for (I).

(I) 3β - Hydroxy - $\Delta^{5,16}$ - pregnene - 20 - one

The IR spectrum of (I) showed absorption band at $3400-3450 \text{ cm}^{-1}$ for hydroxyl group and strong absorptions at 1660 and 1590 cm⁻¹, characteristic of the α,β -unsaturated ketone group in Δ^{16} -20-one. Its UV max at 239.5 nm (ϵ 9000) supported a Δ^{16} -20-one structure.⁵ The nature of pregnene structure was indicated by its MS, [M⁺] 314, m/e 299 (M-Me), 296 (M-H₂O), 281 (M-Me-H₂O), 271 (M-MeCO), 253 (271-H₂O).

- ¹ KANEKO, K., MITSUHASHI, H., HIRAYAMA, K. and YOSHIDA, N. (1970) Phytochemistry 9, 2489.
- ² KANEKO, K., WATANABE, M., TAIRA, S. and MITSUHASHI, H. (1972) Phytochemistry 11, 3199.
- ³ KANEKO, K., WATANABE, M., KAWAKOSHI, U. and MITSUHASHI, H. (1971) Tetrahedron Letters 4251.
- ⁴ KANEKO, K., WATANABE, M. and MITSUHASHI, H. (1972) Abstr. Papers, Annu. Meet. Pharm. Soc. Japan II, 255; details will be published in the following paper.
- MARKER, R. E., WAGNER, R. B., ULSHAFER, P. R., WITTBECKER, E. L., GOLDSMITH, D. P. J. and RUOF, C. H. (1947) J. Am. Chem. Soc. 69, 2167; BUTENANDT, A. and SCHMIDT-THOME, J. (1939) Chem. Ber. 72, 182.

From these results, the structure of (I) is proposed as 3β -hydroxy- $\Delta^{5,16}$ -pregnadien-20-one, and IR, UV and MS of I were completely identical with those of authentic sample. Also no depression in m.p. was observed on admixture with an authentic specimen.

Schreiber and Aurich,⁶ and Heftmann *et al.*⁷ previously isolated 3β -hydroxy- Δ^{16} - 5α -pregnene-20-one from *Lycopersicon pimpenellifolium* (Solanaceae) and they showed that this Δ^{16} -pregnene is a product of the biological degradation of the steroidal alkaloid glycoside tomatin. Recently, Heftmann *et al.*⁸ have shown that this Δ^{16} -pregnene is also produced from neotigogenin in same plant. Also, 3β -hydroxy- $\Delta^{5,16}$ -pregnadien-20-one glycoside has been isolated from the rhizome of *Paris polyphylla* by Kawasaki *et al.*⁹ Thus, 3β -hydroxy- $\Delta^{5,16}$ -pregnene-20-one (I) is probably formed from spirostane derivatives, because *Veratrum* and *Paris* contain a considerable amount of spirostane, either yamogenin or diosgenin.

EXPERIMENTAL

The aerial part of budding *Veratrum* was harvested in early April at Teine, Hokkaido, Japan, and 5·34 kg of powder was obtained by extraction with ammoniacal CHCl₃–MeOH, and 890·4 g of the extract was separated into 328 g of alkaloidal and 112 g of neutral glycosides by the use of tartaric acid. Neutral glycoside 112 g was hydrolyzed with 5 g of emulsin at pH 5·25 in acetate buffer at 37° for 14 days. The hydrolyzate was extracted with Et₂O. The Et₂O extract (yield, 39 g) was chromatographed over 1200 g of silica gel with C_6H_6 (51) and the column successively eluted with 10% Et₂O in C_6H_6 (141.), CHCl₃ (121), and 5% MeOH in CHCl₃(121.). Sitosterol (VI) and yamogenin (IV) were eluted with 10% Et₂O in C_6H_6 and dormantinone (II) and dormantinol (III) were eluted with 5% MeOH in CHCl₃ ⁴ The CHCl₃ fraction (1·2 g) was rechromatographed over 36 g of alumina column with C_6H_6 (1·51.) and then with CHCl₃ (11). The C_6H_6 fraction afforded $10\cdot1$ mg of (I), as crystals, m.p. $208-210^\circ$ (uncorrected), $[a]_{20}^{20}-33\cdot7^\circ$ (c 1, CHCl₃).

Acknowledgements—This work was supported in part by funds from the Takeda Chemical Foundation.

⁶ Schreiber, K. and Aurich, O. (1966) Phytochemistry 5, 707.

⁷ Bennett, R. D., Lieber, E. R. and Heftmann, E. (1967) Phytochemistry 6, 837.

⁸ Heftmann, E and Schwimmer, S. (1972) Phytochemistry 11, 2783.

⁹ FUKUDA, R, NOHARA, N. and KAWASAKI, T. (1972) Abstr. Papers, Annu. Meet Pharma. Soc. Japan II, 249.